lunes, 26 de enero de 2015

New Publication on population dynamics of trouts in Asturia

Férnandez-Chacón, A., Genovart, M., Álvares, D.,Cano, J.M, Ojanguren, A.F., Rodriguez-Muñoz, R.,Nicieza, A.G. Neighbouring populations, opposite dyanmics: influence of body size and environmental variation on the demography of stream-resident brown trout (Salmo trutta). Oecologia 

In organisms such as fish, where body size is considered an important state variable for the study of their population dynamics, size-specific growth and survival rates can be influenced by local variation in both biotic and abiotic factors, but few studies have evaluated the complex relationships between environmental variability and size-dependent processes. We analysed a 6-year capture–recapture dataset of brown trout (Salmo trutta) collected at 3 neighbouring but heterogeneous mountain streams in northern Spain with the aim of investigating the factors shaping the dynamics of local populations. The influence of body size and water temperature on survival and individual growth was assessed under a multi-state modelling framework, an extension of classical capture–recapture models that considers the state (i.e. body size) of the individual in each capture occasion and allows us to obtain state-specific demographic rates and link them to continuous environmental variables. Individual survival and growth patterns varied over space and time, and evidence of size-dependent survival was found in all but the smallest stream. At this stream, the probability of reaching larger sizes was lower compared to the other wider and deeper streams. Water temperature variables performed better in the modelling of the highest-altitude population, explaining over a 99 % of the variability in maturation transitions and survival of large fish. The relationships between body size, temperature and fitness components found in this study highlight the utility of multi-state approaches to investigate small-scale demographic processes in heterogeneous environments, and to provide reliable ecological knowledge for management purposes.

miércoles, 14 de enero de 2015

New Publication !


Oro, D. 2014. Seabirds and climate: knowledge, pitfalls, and opportunities. Frontiers in Ecology and Evolution. doi: 10.3389/fevo.2014.00079

Foto: P. Arcos
As a physical driver of ecosystem functioning, it is not surprising that climate influences seabird demography and population dynamics, generally by affecting food availability. However, if we zoom in ecologically, seabirds are in fact very heterogeneous, ranging in size from very small to very large species (with a
difference of more than two orders of magnitude in body weight), from planktivorous forms to predators of large fish and squid, from benthic to pelagic, from species with small foraging ranges to species feeding throughout the whole circumpolar region, and from resident species (at a spatial mesoscale) to trans-equatorial migrating seabirds that travel large distances across several oceanographic systems. Due to this high variability and the difficulty in obtaining direct reliable estimates of long-term food availability, global climatic indices have been extensively used in studying seabird demography and population dynamics. However, the use made by researchers of these indices has certain conceptual and methodological pitfalls, which I shall address in this review. Other factors, such as anthropogenic impacts (including oil-spills and interaction with fisheries), may further alter or confound the association between climate and seabird demography. These pitfalls and environmental noise, together with the inability to incorporate resilience, may bias our predictions regarding the future impact of global warming on seabirds, many of which have vulnerable populations.